A blog from the Centre for Research Ethics & Bioethics (CRB)

Author: Michele Farisco (Page 1 of 2)

An ethical strategy for improving the healthcare of brain-damaged patients

How can we improve the clinical care of brain-damaged patients? Individual clinicians, professional and patient associations, and other relevant stakeholders are struggling with this huge challenge.

A crucial step towards a better treatment of these very fragile patients is the elaboration and adoption of agreed-upon recommendations for their clinical treatment, both in emergency and intensive care settings. These recommendations should cover different aspects, from diagnosis to prognosis and rehabilitation plan. Both Europe and the US have issued relevant guidelines on Disorders of Consciousness (DoCs) in order to make clinical practice consistent and ultimately more beneficial to patients.

Nevertheless, these documents risk becoming ineffective or not having sufficient impact if they are not complemented with a clear strategy for operationalizing them. In other words, it is necessary to develop an adequate translation of the guidelines into actual clinical practice.

In a recent article that I wrote with Arleen Salles, we argue that ethics plays a crucial role in elaborating and implementing this strategy. The application of the guidelines is ethically very relevant, as it can directly impact the patients’ well-being, their right to the best possible care, communication between clinicians and family members, and overall shared decision-making. Failure to apply the guidelines in an ethically sound manner may inadvertently lead to unequal and unfair treatment of certain patients.

To illustrate, both documents recommend integrating behavioural and instrumental approaches to improve the diagnostic accuracy of DoCs (such as vegetative state/unresponsive wakefulness syndrome, minimally conscious state, and cognitive-motor dissociation). This recommendation is commendable, but not easy to follow because of a number of shortcomings and limitations in the actual clinical settings where patients with DoCs are diagnosed and treated. For instance, not all “ordinary,” non-research oriented hospitals have the necessary financial, human, and technical resources to afford the dual approach recommended by the guidelines. The implementation of the guidelines is arguably a complex process, involving several actors at different levels of action (from the administration to the clinical staff, from the finances to the therapy, etc.). Therefore, it is crucial to clearly identify “who is responsible for what” at each level of the implementation process.

For this reason, we propose that a strategy is built up to operationalize the guidelines, based on a clarification of the notion of responsibility. We introduce a Distributed Responsibility Model (DRM), which frames responsibility as multi-level and multi-dimensional. The main tenet of DRM is a shift from an individualistic to a modular understanding of responsibility, where several agents share professional and/or moral obligations across time. Moreover, specific responsibilities are assigned depending on the different areas of activity. In this way, each agent is assigned a specific autonomy in relation to their field of activity, and the mutual interaction between different agents is clearly defined. As a result, DRM promotes trust between the various agents.

Neither the European nor the US guidelines explicitly address the issue of implementation in terms of responsibility. We argue that this is a problem, because in situations of scarce resources and financial and technological constraints, it is important to explicitly conceptualize responsibility as a distributed ethical imperative that involves several actors. This will make it easier to identify possible failures at different levels and to implement adequate corrective action.

In short, we identify three main levels of responsibility: institutional, clinical, and interpersonal. At the institutional level, responsibility refers to the obligations of the relevant institution or organization (such as the hospital or the research centre). At the clinical level, responsibility refers to the obligations of the clinical staff. At the interpersonal level, responsibility refers to the involvement of different stakeholders with individual patients (more specifically, institutions, clinicians, and families/surrogates).

Our proposal in the article is thus to combine these three levels, as formalized in DRM, in order to operationalize the guidelines. This can help reduce the gap between the recommendations and actual clinical practice.

Written by…

Michele Farisco, Postdoc Researcher at Centre for Research Ethics & Bioethics, working in the EU Flagship Human Brain Project.

Farisco, Michele; Salles, Arleen. American and European Guidelines on Disorders of Consciousness: Ethical Challenges of Implementation, Journal of Head Trauma Rehabilitation: April 13, 2022. doi: 10.1097/HTR.0000000000000776

We want solid foundations

How can we detect consciousness in brain-damaged patients?

Detecting consciousness in brain-damaged patients can be a huge challenge and the results are often uncertain or misinterpreted. In a previous post on this blog I described six indicators of consciousness that I introduced together with a neuroscientist and another philosopher. Those indicators were originally elaborated targeting animals and AI systems. Our question was: what capacities (deducible from behavior and performance or relevant cerebral underpinnings) make it reasonable to attribute consciousness to these non-human agents? In the same post, I mentioned that we were engaged in a multidisciplinary exploration of the clinical relevance of selected indicators, specifically for testing them on patients with Disorders of Consciousness (DoCs, for instance, Vegetative State/Unresponsive Wakefulness Syndrome, Minimally Conscious State, Cognitive-Motor Dissociation). While this multidisciplinary work is still in progress, we recently published an ethical reflection on the clinical relevance of the indicators of consciousness, taking DoCs as a case study.

To recapitulate, indicators of consciousness are conceived as particular capacities that can be deduced from the behavior or cognitive performance of a subject and that serve as a basis for a reasonable inference about the level of consciousness of the subject in question. Importantly, also the neural correlates of the relevant behavior or cognitive performance may make possible deducing the indicators of consciousness.  This implies the relevance of the indicators to patients with DoCs, who are often unable to behave or to communicate overtly. Responses in the brain can be used to deduce the indicators of consciousness in these patients.

On the basis of this relevance, we illustrate how the different indicators of consciousness might be applied to patients with DoCs with the final goal of contributing to improve the assessment of their residual conscious activity. In fact, a still astonishing rate of misdiagnosis affects this clinical population. It is estimated that up to 40 % of patients with DoCs are wrongly diagnosed as being in Vegetative State/Unresponsive Wakefulness Syndrome, while they are actually in a Minimally Conscious State. The difference of these diagnoses is not minimal, since they have importantly different prognostic implications, which raises a huge ethical problem.

We also argue for the need to recognize and explore the specific quality of the consciousness possibly retained by patients with DoCs. Because of the devastating damages of their brain, it is likely that their residual consciousness is very different from that of healthy subjects, usually assumed as a reference standard in diagnostic classification. To illustrate, while consciousness in healthy subjects is characterized by several distinct sensory modalities (for example, seeing, hearing and smelling), it is possible that in patients with DoCs, conscious contents (if any) are very limited in sensory modalities. These limitations may be evaluated based on the extent of the brain damage and on the patients’ residual behaviors (for instance, sniffing for smelling). Also, consciousness in healthy subjects is characterized by both dynamics and stability: it includes both dynamic changes and short-term stabilization of contents. Again, in the case of patients with DoCs, it is likely that their residual consciousness is very unstable and flickering, without any capacity for stabilization. If we approach patients with DoCs without acknowledging that consciousness is like a spectrum that accommodates different possible shapes and grades, we exclude a priori the possibility of recognizing the peculiarity of consciousness possibly retained by these patients.

The indicators of consciousness we introduced offer a potential help to identify the specific conscious abilities of these patients. While in this paper we argue for the rationale behind the clinical use of these indicators, and for their relevance to patients with DoCs, we also acknowledge that they open up new lines of research with concrete application to patients with DoCs. As already mentioned, this more applied work is in progress and we are confident of being able to present relevant results in the weeks to come.

Written by…

Michele Farisco, Postdoc Researcher at Centre for Research Ethics & Bioethics, working in the EU Flagship Human Brain Project.

Farisco, M., Pennartz, C., Annen, J. et al. Indicators and criteria of consciousness: ethical implications for the care of behaviourally unresponsive patients. BMC Med Ethics 2330 (2022). https://doi.org/10.1186/s12910-022-00770-3

We have a clinical perspective

How can neuroethics and AI ethics join their forces?

As I already wrote on this blog, there has been an explosion of AI in recent years. AI affects so many aspects of our lives that it is virtually impossible to avoid interacting with it. Since AI has such an impact, it must be examined from an ethical point of view, for the very basic reason that it can be developed and/or used for both good and evil.

In fact, AI ethics is becoming increasingly popular nowadays. As it is a fairly young discipline, even though it has roots in, for example, digital and computer ethics, the question is open about its status and methodology. To simplify the debate, the main trend is to conceive AI ethics in terms of practical ethics, for example, with a focus on the impact of AI on traditional practices in education, work, healthcare, entertainment, among others. In addition to this practically oriented analysis, there is also attention to the impact of AI on the way we understand our society and ourselves as part of it.

In this debate about the identity of AI ethics, the need for a closer collaboration with neuroethics has been briefly pointed out, but so far no systematic reflection has been made on this need. In a new article, I propose, together with Kathinka Evers and Arleen Salles, an argument to justify the need for closer collaboration between neuroethics and AI ethics. In a nutshell, even though they both have specific identities and their topics do not completely overlap, we argue that neuroethics can complement AI ethics for both content-related and methodological reasons.

Some of the issues raised by AI are related to fundamental questions that neuroethics has explored since its inception. Think, for example, of topics such as intelligence: what does it mean to be intelligent? In what sense can a machine be qualified as an intelligent agent? Could this be a misleading use of words? And what ethical implications can this linguistic habit have, for example, on how we attribute responsibility to machines and to humans? Another issue that is increasingly gaining ground in AI ethics literature, as I wrote on this blog, is the conceivability and the possibility of artificial consciousness. Neuroethics has worked extensively on both intelligence and consciousness, combining applied and fundamental analyses, which can serve as a source of relevant information for AI ethics.

In addition to the above content-related reasons, neuroethics can also provide AI ethics with a methodological model. To illustrate, the kind of conceptual clarification performed in fundamental neuroethics can enrich the identification and assessment of the practical ethical issues raised by AI. More specifically, neuroethics can provide a three-step model of analysis to AI ethics: 1. Conceptual relevance: can specific notions, such as autonomy, be attributed to AI? 2. Ethical relevance: are these specific notions ethically salient (i.e., do they require ethical evaluation)? 3. Ethical value: what is the ethical significance and the related normative implications of these specific notions?

This three-step approach is a promising methodology for ethical reflection about AI which avoids the trap anthropocentric self-projection, a risk that actually affects both the philosophical reflection on AI and its technical development.

In this way, neuroethics can contribute to avoiding both hypes and disproportionate worries about AI, which are among the biggest challenges facing AI ethics today.

Written by…

Michele Farisco, Postdoc Researcher at Centre for Research Ethics & Bioethics, working in the EU Flagship Human Brain Project.

Farisco, M., Evers, K. & Salles, A. On the Contribution of Neuroethics to the Ethics and Regulation of Artificial Intelligence. Neuroethics 15, 4 (2022). https://doi.org/10.1007/s12152-022-09484-0

We transcend disciplinary borders

Brain-inspired AI: human narcissism again?

This is an age when Artificial Intelligence (AI) is literally exploding and invading almost every aspect of our lives. From entertainment to work, from economics to medicine, from education to marketing, we deal with a number of disparate AI systems that make our lives much easier than a few years ago, but also raise new ethical issues or emphasize old, still open questions.

A basic fact about AI is that it is progressing at an impressive pace, while still being limited with regard to various specific contexts and goals. We often read, also in non-specialized journals, that AI systems are not robust (meaning they are not good at dealing with datasets too much different from the one they have been trained with, so that the risk of cyber-attacks is still pretty high), not fully transparent, and limited in their capacity to generalize, for instance. This suggests that the reliability of AI systems, in other words the possibility to use them for achieving different goals, is limited, and we should not blindly trust them.

A strategy increasingly chosen by AI researchers in order to improve the systems they develop is taking inspiration from biology, and specifically from the human brain. Actually, this is not really new: already the first wave of AI took inspiration from the brain, which was (and still is) the most familiar intelligent system in the world. This trend towards brain-inspired AI is gaining much more momentum today, for two main reasons among others: big data and the very powerful technology to handle big data. And yet, brain-inspired AI raises a number of questions of an even deeper nature, which urge us to stop and think.

Indeed, when compared to the human brain, present AI reveals several differences and limitations with regards to different contexts and goals. For instance, present Machine Learning cannot generalize the abilities it achieves on the basis of specific data in order to use them in different settings and for different goals. Also, AI systems are fragile: a slight change in the characteristics of processed data can have catastrophic consequences. These limitations are arguably dependent on both how AI is conceived (technically speaking: on its underlying architecture), and on how it works (on its underlying technology). I would like to introduce some reflections about the choice to use the human brain as a model for improving AI, including the apparent limitations of this choice to use the brain as a model.

Very roughly, AI researchers are looking at the human brain to infer operational principles and then translate them into AI systems and eventually make these systems better in a number of tasks. But is a brain-inspired strategy the best we can choose? What justifies it? In fact, there are already AI systems that work in ways that do not conform to the human brain. We cannot exclude a priori that AI will eventually develop more successfully along lines that do not fully conform to, or that even deviate from, the way the human brain works.

Also, we should not forget that there is no such thing as the brain: there is a huge diversity both among different people and within the brain itself. The development of our brains reflects a complex interplay between our genetic make-up and our life experiences. Moreover, the brain is a multilevel organ with different structural and functional levels.

Thus, claiming a brain-inspired AI without clarifying which specific brain model is used as a reference (for instance, the neurons’ action potentials rather than the connectomes’ network) is possibly misleading if not nonsensical.

There is also a more fundamental philosophical point worth considering. Postulating that the human brain is paradigmatic for AI risks to implicitly endorse a form of anthropocentrism and anthropomorphism, which are both evidence of our intellectual self-centeredness and of our limited ability to think beyond what we think we are.

While pragmatic reasons might justify the choice to take the brain as a model for AI (after all, for many aspects, the brain is the most efficient intelligent system that we know in nature), I think we should avoid the risk of translating this legitimate technical effort into a further narcissistic, self-referential anthropological model. Our history is already full of such models, and they have not been ethically or politically harmless.

Written by…

Michele Farisco, Postdoc Researcher at Centre for Research Ethics & Bioethics, working in the EU Flagship Human Brain Project.

Approaching future issues

Consciousness and complexity: theoretical challenges for a practically useful idea

Contemporary research on consciousness is ambiguous, like the double-faced god Janus. On the one hand, it has achieved impressive practical results. We can today detect conscious activity in the brain for a number of purposes, including better therapeutic approaches to people affected by disorders of consciousness such as coma, vegetative state and minimally conscious state. On the other hand, the field is marked by a deep controversy about methodology and basic definitions. As a result, we still lack an overarching theory of consciousness, that is to say, a theoretical account that scholars agree upon.

Developing a common theoretical framework is recognized as increasingly crucial to understanding consciousness and assessing related issues, such as emerging ethical issues. The challenge is to find a common ground among the various experimental and theoretical approaches. A strong candidate that is achieving increasing consensus is the notion of complexity. The basic idea is that consciousness can be explained as a particular kind of neural information processing. The idea of associating consciousness with complexity was originally suggested by Giulio Tononi and Gerald Edelman in a 1998 paper titled Consciousness and Complexity. Since then, several papers have been exploring its potential as the key for a common understanding of consciousness.

Despite the increasing popularity of the notion, there are some theoretical challenges that need to be faced, particularly concerning the supposed explanatory role of complexity. These challenges are not only philosophically relevant. They might also affect the scientific reliability of complexity and the legitimacy of invoking this concept in the interpretation of emerging data and in the elaboration of scientific explanations. In addition, the theoretical challenges have a direct ethical impact, because an unreliable conceptual assumption may lead to misplaced ethical choices. For example, we might wrongly assume that a patient with low complexity is not conscious, or vice-versa, eventually making medical decisions that are inappropriate to the actual clinical condition.

The claimed explanatory power of complexity is challenged in two main ways: semantically and logically. Let us take a quick look at both.

Semantic challenges arise from the fact that complexity is such a general and open-ended concept. It lacks a shared definition among different people and different disciplines. This open-ended generality and lack of definition can be a barrier to a common scientific use of the term, which may impact its explanatory value in relation to consciousness. In the landmark paper by Tononi and Edelman, complexity is defined as the sum of integration (conscious experience is unified) and differentiation (we can experience a large number of different states). It is important to recognise that this technical definition of complexity refers only to the stateof consciousness, not to its contents. This means that complexity-related measures can give us relevant information about the levelof consciousness, yet they remain silent about the corresponding contentsandtheirphenomenology. This is an ethically salient point, since the dimensions of consciousness that appear most relevant to making ethical decisions are those related to subjective positive and negative experiences. For instance, while it is generally considered as ethically neutral how we treat a machine, it is considered ethically wrong to cause negative experiences to other humans or to animals.

Logical challenges arise about the justification for referring to complexity in explaining consciousness. This justification usually takes one of two alternative forms. The justification is either bottom-up (from data to theory) or top-down (from phenomenology to physical structure). Both raise specific issues.

Bottom-up: Starting from empirical data indicating that particular brain structures or functions correlate to particular conscious states, relevant theoretical conclusions are inferred. More specifically, since the brains of subjects that are manifestly conscious exhibit complex patterns (integrated and differentiated patterns), we are supposed to be justified to infer that complexity indexes consciousness. This conclusion is a sound inference to the best explanation, but the fact that a conscious state correlates with a complex brain pattern in healthy subjects does not justify its generalisation to all possible conditions (for example, disorders of consciousness), and it does not logically imply that complexity is a necessary and/or sufficient condition for consciousness.

Top-down: Starting from certain characteristics of personal experience, we are supposed to be justified to infer corresponding characteristics of the underlying physical brain structure. More specifically, if some conscious experience is complex in the technical sense of being both integrated and differentiated, we are supposed to be justified to infer that the correlated brain structures must be complex in the same technical sense. This conclusion does not seem logically justified unless we start from the assumption that consciousness and corresponding physical brain structures must be similarly structured. Otherwise it is logically possible that conscious experience is complex while the corresponding brain structure is not, and vice versa. In other words, it does not appear justified to infer that since our conscious experience is integrated and differentiated, the corresponding brain structure must be integrated and differentiated. This is a possibility, but not a necessity.

The abovementioned theoretical challenges do not deny the practical utility of complexity as a relevant measure in specific clinical contexts, for example, to quantify residual consciousness in patients with disorders of consciousness. What is at stake is the explanatory status of the notion. Even if we question complexity as a key factor in explaining consciousness, we can still acknowledge that complexity is practically relevant and useful, for example, in the clinic. In other words, while complexity as an explanatory category raises serious conceptual challenges that remain to be faced, complexity represents at the practical level one of the most promising tools that we have to date for improving the detection of consciousness and for implementing effective therapeutic strategies.

I assume that Giulio Tononi and Gerald Edelman were hoping that their theory about the connection between consciousness and complexity finally would erase the embarrassing ambiguity of consciousness research, but the deep theoretical challenges suggest that we have to live with the resemblance to the double-faced god Janus for a while longer.

Written by…

Michele Farisco, Postdoc Researcher at Centre for Research Ethics & Bioethics, working in the EU Flagship Human Brain Project.

Tononi, G. and G. M. Edelman. 1998. Consciousness and complexity. Science 282(5395): 1846-1851.

We like critical thinking

Can AI be conscious? Let us think about the question

Artificial Intelligence (AI) has achieved remarkable results in recent decades, especially thanks to the refinement of an old and for a long time neglected technology called Deep Learning (DL), a class of machine learning algorithms. Some achievements of DL had a significant impact on public opinion thanks to important media coverage, like the cases of the program AlphaGo and its successor AlphaGo Zero, which both defeated the Go World Champion, Lee Sedol.

This triumph of AlphaGo was a kind of profane consecration of AI’s operational superiority in an increasing number of tasks. This manifest superiority of AI gave rise to mixed feelings in human observers: the pride of being its creator; the admiration of what it was able to do; the fear of what it might eventually learn to do.

AI research has generated a linguistic and conceptual process of re-thinking traditionally human features, stretching their meaning or even reinventing their semantics in order to attribute these traits also to machines. Think of how learning, experience, training, prediction, to name just a few, are attributed to AI. Even if they have a specific technical meaning among AI specialists, lay people tend to interpret them within an anthropomorphic view of AI.

One human feature in particular is considered the Holy Grail when AI is interpreted according to an anthropomorphic pattern: consciousness. The question is: can AI be conscious? It seems to me that we can answer this question only after considering a number of preliminary issues.

First we should clarify what we mean by consciousness. In philosophy and in cognitive science, there is a useful distinction, originally introduced by Ned Block, between access consciousness and phenomenal consciousness. The first refers to the interaction between different mental states, particularly the availability of one state’s content for use in reasoning and rationally guiding speech and action. In other words, access consciousness refers to the possibility of using what I am conscious of. Phenomenal consciousness refers to the subjective feeling of a particular experience, “what it is like to be” in a particular state, to use the words of Thomas Nagel. So, in what sense of the word “consciousness” are we asking if AI can be conscious?

To illustrate how the sense in which we choose to talk about consciousness makes a difference in the assessment of the possibility of conscious AI, let us take a look at an interesting article written by Stanislas Dehaene, Hakwan Lau and Sid Koudier. They frame the question of AI consciousness within the Global Neuronal Workspace Theory, one of the leading contemporary theories of consciousness. As the authors write, according to this theory, conscious access corresponds to the selection, amplification, and global broadcasting of particular information, selected for its salience or relevance to current goals, to many distant areas. More specifically, Dehaene and colleagues explore the question of conscious AI along two lines within an overall computational framework:

  1. Global availability of information (the ability to select, access, and report information)
  2. Metacognition (the capacity for self-monitoring and confidence estimation).

Their conclusion is that AI might implement the first meaning of consciousness, while it currently lacks the necessary architecture for the second one.

As mentioned, the premise of their analysis is a computational view of consciousness. In other words, they choose to reduce consciousness to specific types of information-processing computations. We can legitimately ask whether such a choice covers the richness of consciousness, particularly whether a computational view can account for the experiential dimension of consciousness.

This shows how the main obstacle in assessing the question whether AI can be conscious is a lack of agreement about a theory of consciousness in the first place. For this reason, rather than asking whether AI can be conscious, maybe it is better to ask what might indicate that AI is conscious. This brings us back to the indicators of consciousness that I wrote about in a blog post some months ago.

Another important preliminary issue to consider, if we want to seriously address the possibility of conscious AI, is whether we can use the same term, “consciousness,” to refer to a different kind of entity: a machine instead of a living being. Should we expand our definition to include machines, or should we rather create a new term to denote it? I personally think that the term “consciousness” is too charged, from several different perspectives, including ethical, social, and legal perspectives, to be extended to machines. Using the term to qualify AI risks extending it so far that it eventually becomes meaningless.

If we create AI that manifests abilities that are similar to those that we see as expressions of consciousness in humans, I believe we need a new language to denote and think about it. Otherwise, important preliminary philosophical questions risk being dismissed or lost sight of behind a conceptual veil of possibly superficial linguistic analogies.

Written by…

Michele Farisco, Postdoc Researcher at Centre for Research Ethics & Bioethics, working in the EU Flagship Human Brain Project.

We want solid foundations

The hard problem of consciousness: please handle with care!

We face challenges every day. Some are more demanding than others, but it seems that there is not a day without some problem to handle. Unless they are too big to manage, problems are like the engines of our lives. They push us to always go beyond wherever we are and whatever we do, to look for new possibilities, to build new opportunities. In other words: problems make us stay alive.

The same is true for science and philosophy. There is a constant need to face new challenges. Consciousness research is no exception. There are, of course, several problems in the investigation of consciousness. However, one problem has emerged as the big problem, which the Australian philosopher David Chalmers baptised “the hard problem of consciousness.” This classical problem (discussed even before Chalmers coined this expression, actually since the early days of neuropsychology, notably by Alexander Luria and collaborators) refers to the enigma of subjective experience. To adapt a formulation by the philosopher Thomas Nagel, the basic question is: why do we have experiences of what it is like to be conscious, for example, why do we experience that pain and hunger feel the way they do?

The hard problem has a double nature. On the one hand, it refers to what Joseph Levine had qualified as an explanatory gap. The strategy to identify psychological experiences with physical features of the brain is in the end unable to explain why experiences are related to physical phenomena at all. On the other hand, the hard problem also refers to the question if subjective experience can be explained causally or if it is intrinsic to the world, that is to say: fundamentally there, from the beginning, rather than caused by something more primary.

This double nature of the problem has been a stumbling block in the attempt to explain consciousness. Yet in recent years, the hardness of the problem has been increasingly questioned. Among the arguments that appear relevant in order to soften the problem, there is one that I think merits specific attention. This argument describes consciousness as a cultural concept, meaning that both the way we conceive it and the way we experience it depend on our culture. There are different versions of this argument: some reduce consciousness as such to a cultural construction, while other, less radical arguments stress that consciousness has a neurological substrate that is importantly shaped by culture. The relevant point is that by characterising consciousness as a cultural construction, with reference both to how we conceptualise it and how we are conscious, this argument ultimately questions the hardness of the hard problem.

To illustrate, consider anthropological and neuroscientific arguments that appear to go in the direction of explaining away the hard problem of consciousness. Anthropological explanations give a crucial role to culture and its relationship with consciousness. Humans have an arguably unique capacity of symbolisation, which enables us to create an immaterial world both through the symbolisation of the actual world and through the construction of immaterial realities that are not experienced through the senses. This human symbolic capacity can be applied not only to the external world, but also to brain activity, resulting in the conceptual construction of notions like consciousness. We symbolise our brain activity, hypostatise our conscious activities, and infer supposedly immaterial causes behind them.

There are also neuroscientific and neuropsychological attempts to explain how consciousness and our understanding of it evolved, which ultimately appear to potentially explain away the hard problem. Attention Schema Theory, for instance, assumes that people tend to “attribute a mysterious consciousness to themselves and to others because of an inherently inaccurate model of mind, and especially a model of attention.” The origin of the attribution of this mysterious consciousness is in culture and in folk-psychological beliefs, for instance, ideas about “an energy-like substance inhabiting the body.” In other words, culturally based mistaken beliefs derived from implicit social-cognitive models affect and eventually distort our view of consciousness. Ultimately, consciousness does not really exist as a distinct property, and its appearance as a non-physical property is a kind of illusion. Thus, the hard problem does not originate from real objective features of the world, but rather from implicit subjective beliefs derived from internalised socio-cultural models, specifically from the intuition that mind is an invisible essence generated within an agent.

While I do not want to conceptually challenge the arguments above, I here only suggest potential ethical issues that might arise if we assume the validity of those arguments. What are the potential neuroethical implications of these ideas of consciousness as culturally constructed? Since the concept of consciousness traditionally played an important role in ethical reasoning, for example, in the notion of a person, questioning the objective status of conscious experience may have important ethical implications that should be adequately investigated. For instance, if consciousness depends on culture, then any definition of altered states of consciousness is culturally relative and context-dependent. This might have an impact on, for example, the ethical evaluation of the use of psychotropic substances, which for some cultures, as history tells us, can be considered legitimate and positive. Why should we limit the range of states of consciousness that are allowed to be experienced? What makes it legitimate for a culture to assert its own behavioural standards? To what extent can individuals justify their behaviour by appealing to their culture? 

In addition, if consciousness (i.e., the way we are conscious, what we are conscious of, and our understanding of consciousness) is dependent on culture, then some conscious experiences might be considered more or less valuable in different cultural contexts, which could affect, for example, end-of-life decisions. If the concept of consciousness, and thus its ethical relevance and value, depends on culture, then consciousness no longer offers a solid foundation for ethical deliberation. Softening the hard problem of consciousness might also soften the foundation of what I defined elsewhere as the consciousness-centred ethics of disorders of consciousness (vegetative states, unresponsive wakefulness states, minimally conscious states, and cognitive-motor dissociation).

Although a cultural approach to consciousness can soften the hard problem conceptually, it creates hard ethical problems that require specific attention. It seems that any attempt to challenge the hard problem of consciousness results in a situation similar to that of having a blanket that is too short: if you pull it to one side (in the direction of the conceptual problem), you leave the other side uncovered (ethical issues based on the notion of consciousness). It seems that we cannot soften the hard problem of consciousness without the risk of relativizing ethics.

Written by…

Michele Farisco, Postdoc Researcher at Centre for Research Ethics & Bioethics, working in the EU Flagship Human Brain Project.

We like challenging questions

Are you conscious? Looking for reliable indicators

How can we be sure that a person in front of us is conscious? This might seem like a naïve question, but it actually resulted in one of the trickiest and most intriguing philosophical problems, classically known as “the other minds problem.”

Yet this is more than just a philosophical game: reliable detection of conscious activity is among the main neuroscientific and technological enterprises today. Moreover, it is a problem that touches our daily lives. Think, for instance, of animals: we are (at least today) inclined to attribute a certain level of consciousness to animals, depending on the behavioural complexity they exhibit. Or think of Artificial Intelligence, which exhibits astonishing practical abilities, even superior to humans in some specific contexts.

Both examples above raise a fundamental question: can we rely on behaviour alone in order to attribute consciousness? Is that sufficient?

It is now clear that it is not. The case of patients with devastating neurological impairments, like disorders of consciousness (unresponsive wakefulness syndrome, minimally conscious state, and cognitive-motor dissociation) is highly illustrative. A number of these patients might retain residual conscious abilities although they are unable to show them behaviourally. In addition, subjects with locked-in syndrome have a fully conscious mind even if they do not exhibit any behaviours other than blinking.

We can conclude that absence of behavioural evidence for consciousness is not evidence for the absence of consciousness. If so, what other indicators can we rely on in order to attribute consciousness?

The identification of indicators of consciousness is necessarily a conceptual and an empirical task: we need a clear idea of what to look for in order to define appropriate empirical strategies. Accordingly, we (a group of two philosophers and one neuroscientist) conducted joint research eventually publishing a list of six indicators of consciousness.  These indicators do not rely only on behaviour, but can be assessed also through technological and clinical approaches:

  1. Goal directed behaviour (GDB) and model-based learning. In GDB I am driven by expected consequences of my action, and I know that my action is causal for obtaining a desirable outcome. Model-based learning depends on my ability to have an explicit model of myself and the world surrounding me.
  2. Brain anatomy and physiology. Since the consciousness of mammals depends on the integrity of particular cerebral systems (i.e., thalamocortical systems), it is reasonable to think that similar structures indicate the presence of consciousness.
  3. Psychometrics and meta-cognitive judgement. If I can detect and discriminate stimuli, and can make some meta-cognitive judgements about perceived stimuli, I am probably conscious.
  4. Episodic memory. If I can remember events (“what”) I experienced at a particular place (“where”) and time (“when”), I am probably conscious.
  5. Acting out one’s subjective, situational survey: illusion and multistable perception. If I am susceptible to illusions and perceptual ambiguity, I am probably conscious.
  6. Acting out one’s subjective, situational survey: visuospatial behaviour. Our last proposed indicator of consciousness is the ability to perceive objects as stably positioned, even when I move in my environment and scan it with my eyes.

This list is conceived to be provisional and heuristic but also operational: it is not a definitive answer to the problem, but it is sufficiently concrete to help identify consciousness in others.

The second step in our task is to explore the clinical relevance of the indicators and their ethical implications. For this reason, we selected disorders of consciousness as a case study. We are now working together with cognitive and clinical neuroscientists, as well as computer scientists and modellers, in order to explore the potential of the indicators to quantify to what extent consciousness is present in affected patients, and eventually improve diagnostic and prognostic accuracy. The results of this research will be published in what the Human Brain Project Simulation Platform defines as a “live paper,” which is an interactive paper that allows readers to download, visualize or simulate the presented results.

Written by…

Michele Farisco, Postdoc Researcher at Centre for Research Ethics & Bioethics, working in the EU Flagship Human Brain Project.

Pennartz CMA, Farisco M and Evers K (2019) Indicators and Criteria of Consciousness in Animals and Intelligent Machines: An Inside-Out Approach. Front. Syst. Neurosci. 13:25. doi: 10.3389/fnsys.2019.00025

We transcend disciplinary borders

Drug addiction as a mental and social disorder

Michele FariscoCan the brain sciences help us to better understand and handle urgent social problems like drug addiction? Can they even help us understand how social disorder creates disorderly, addicted brains?

If, as seems to be the case, addiction has a strong cerebral base, then it follows that knowing the brain is the key to finding effective treatments for addiction. Yet, what aspects of the brain should be particularly investigated? In a recent article, co-authored with the philosopher Kathinka Evers and the neuroscientist Jean-Pierre Changeux, I suggest that we need to focus on both aware and unaware processes in the brain, trying to figure out how these are affected by environmental influences, and how they eventually affect individual behavior.

There is no doubt that drug addiction is one of the most urgent emergencies in contemporary society. Think, for instance, of the opioid crisis in the US. It has become a kind of social plague, affecting millions of people. How was that possible? What are the causes of such a disaster? Of course, several factors contributed to the present crisis. We suggest, however, that certain external factors influenced brain processes on an unaware level, inviting addictive behavior.

To give an example, one of the causes of the opioid crisis seems to be the false assumption that opioid drugs do not cause addiction. Taking this view of opioid drugs was an unfortunate choice, we argue, likely favored by the financial interests of pharmaceutical companies. It affected not only physicians’ aware opinions, but also their unaware views on opioid drugs, and eventually their inclination to prescribe them. But that is not all. Since there is a general disposition to trust medical doctors’ opinions and choices, the original false assumption that opioid drugs do not cause addiction spread and affected also public opinion, especially at the unaware level. In other words, we think that there is a social responsibility for the increase in drug addiction, if not in ethical terms, at least in terms of public policies.

This is just an example of how external factors contribute to a personal disposition to use potentially addictive drugs. Of course, the factors involved in creating addiction are multifarious and not limited to false views about the risk of addiction associated with certain drugs.

More generally, we argue that in addition to the internal bases of addiction in the central nervous system, socio-economic status modulates, through unaware processing, what can be described as a person’s subjective “global well-being,” raising in some individuals the need for additional rewards in the brain. In the light of the impact of external factors, we argue that some people are particularly vulnerable to the pressures of the political and socio-economical capitalistic system, and that this stressful condition, which has both aware and unaware components, is one of the main causes of addiction. For this reason, we conclude that addiction is not only a medical and mental disorder, but also a social disorder.

Michele Farisco

Farisco M, Evers K and Changeux J-P (2018) Drug Addiction: From Neuroscience to Ethics. Front. Psychiatry 9:595. doi: 10.3389/fpsyt.2018.00595

Searching for consciousness needs conceptual clarification

Michele FariscoWe can hardly think of ourselves as living persons without referring to consciousness. In fact, we normally define ourselves through two features of our life: we are awake (the level of our consciousness is more than zero), and we are aware of something (our consciousness is not empty).

While it is quite intuitive to think that our brains are necessary for us to be conscious, it is tempting to think that looking at what is going on in the brain is enough to understand consciousness. But empirical investigations are not enough.

Neuroscientific methods to investigate consciousness and its disorders have developed massively in the last decades. The scientific and clinical advancements that have resulted are impressive. But while the ethical and clinical impacts of these advancements are often debated and studied, there is little conceptual analysis.

I think of one example in particular, namely, the neuroscience of disorders of consciousness. These are states where a person’s consciousness is more or less severely damaged. Most commonly, we think of patients in vegetative state, who exhibit levels of consciousness without any content. But it could also be a minimally conscious state with fluctuating levels and contents of consciousness.

How can we explain these complex conditions? Empirical science is usually supposed to be authoritative and help to assess very important issues, such as consciousness. Such scientific knowledge is basically inferential: it is grounded in the comparative assessment of residual consciousness in brain-damaged patients.

But because of its inferential nature, neuroscience takes the form of an inductive reasoning: it infers the presence of consciousness starting from data extracted by neurotechnology. This is done by comparing data from brain damaged patients with data from healthy individuals. Yet this induction is valid only on the basis of a previous definition of consciousness, a definition we made within an implicit or explicit theoretical framework. Thus a conceptual assessment of consciousness that is defined within a well-developed conceptual framework is crucial, and it will affect the inference of consciousness from empirical data.

When it comes to disorders of consciousness, there is still no adequate conceptual analysis of the complexity of consciousness: its levels, modes and degrees. Neuroscience often takes a functionalist account of consciousness for granted in which consciousness is assumed to be equivalent to cognition or at least to be based in cognition. Yet findings from comatose patients suggest that this is not the case. Instead, consciousness seems to be grounded on the phenomenal functions of the brain as they are related to the resting state’s activity.

For empirical neuroscience to be able to contribute to an understanding of consciousness, neuroscientists need input from philosophy. Take the case of communication with speechless patients through neurotechnology (Conversations with seemingly unconscious patients), or the prospective simulation of the brain (The challenge to simulate the brain) for example: here scientists can give philosophers empirical data that need to be considered in order to develop a well-founded conceptual framework within which consciousness can be defined.

The alleged autonomy of empirical science as source of objective knowledge is problematic. This is the reason why philosophy needs to collaborate with scientists in order to conceptually refine their research methods. On the other hand, dialogue with science is essential for philosophy to be meaningful.

We need a conceptual strategy for clarifying the theoretical framework of neuroscientific inferences. This is what we are trying to do in our CRB neuroethics group as part of the Human Brain Project (Neuroethics and Neurophilosophy).

Michele Farisco

This post in Swedish

We want solid foundations - the Ethics Blog

« Older posts