A blog from the Centre for Research Ethics & Bioethics (CRB)

Tag: biobanks (Page 1 of 9)

Safeguards when biobank research complies with the General Data Protection Regulation

The General Data Protection Regulation (GDPR) entails a tightening of EU data protection rules. These rules do not only apply to the processing of personal data by companies. They apply in general, also to scientific research, which in many cases could entail serious restrictions on research. However, the GDPR allows for several derogations and exemptions when it comes to research that would otherwise probably be made impossible or considerably more difficult.

Such derogations are allowed only if appropriate safeguards, which are in accordance with the regulation, are in place. But what safeguards may be required? Article 89 of the regulation mentions technical and organizational measures to ensure compliance with the principle of data minimization: personal data shall be adequate, relevant and limited to what is necessary in relation to the purposes for which they are processed. Otherwise, Article 89 does not specify what safeguards are required, or what it means that the safeguards must be in accordance with the GDPR.

Biobank and genetic research require large amounts of biological samples and health-related data. Personal data may need to be stored for a long time and reused by new research groups for new research purposes. This would not be possible if the regulation did not grant an exemption from the rule that personal data may not be stored longer than necessary and for purposes not specified at data collection. But the question remains, what safeguards may be required to grant exemption?

The issue is raised by Ciara Staunton and three co-authors in an article in Frontiers in Genetics. The article begins by discussing the regulation and how to interpret the requirement that the safeguards should be “in accordance with the GDPR.” Then six possible safeguards are proposed for biobank and genetic research. The proposal is based on a thorough review of a number of documents that regulate health research.

Here, I merely want to recommend reading to anyone working on the issue of appropriate safeguards in biobank and genetic research. Therefore, I mention only briefly that the proposed safeguards concern (1) consent, (2) independent review and oversight, (3) accountable processes, (4) clear and transparent policies and processes, (5) security, and (6) training and education.

If you want to know more about the proposed safeguards, you will find the article here: Appropriate Safeguards and Article 89 of the GDPR: Considerations for Biobank, Databank and Genetic Research.

Pär Segerdahl

Written by…

Pär Segerdahl, Associate Professor at the Centre for Research Ethics & Bioethics and editor of the Ethics Blog.

Ciara Staunton, Santa Slokenberga, Andrea Parziale and Deborah Mascalzoni. Appropriate Safeguards and Article 89 of the GDPR: Considerations for Biobank, Databank and Genetic Research. Frontiers in Genetics. 18 February 2022 doi: 10.3389/fgene.2022.719317

This post in Swedish

We recommend readings

Dynamic consent: broad and specific at the same time

The challenge of finding an appropriate way to handle informed consent to biobank research is big and has often been discussed here on the Ethics Blog. Personal data and biological samples are collected and saved for a long time to be used in future research, for example, on how genes and the environment interact in various diseases. The informed consent to research is for natural reasons broad, because when collecting data and samples it is not yet possible to specify which future research studies the material will be used in.

An unusually clear and concise article on biobank research presents a committed approach to the possible ethical challenges regarding broad consent. The initial broad consent to research is combined with clearly specified strong governance and oversight mechanisms. The approach is characterized also by continuous communication with the research participants, through which they receive updated information that could not be given at the time of the original consent. This enables participants to stay specifically informed and make autonomous choices about their research participation through time.

The model is called dynamic consent. This form of consent can be viewed as broad and specific at the same time. The article describes experiences from a long-term biobank study in South Tyrol in Italy, the CHRIS study, where dynamic consent is implemented since 2011. The model is now used to initiate the first follow-up phase, where participants are contacted for further sampling and data collection in new studies.

The article on dynamic consent in the CHRIS study is written by Roberta Biasiotto, Peter P. Pramstaller and Deborah Mascalzoni. In addition to describing their experiences of dynamic consent, they also respond to common objections to the model, for example, that participants would be burdened by constant requests for consent or that participants would have an unreasonable influence over research.

I would like to emphasize once again the clarity of the article, which shows great integrity and courage. The authors do not hide behind a facade of technical terminology and jargon, so that one must belong to a certain academic discipline to understand. They write broadly and specifically at the same time, I am inclined to say! This inspires confidence and indicates how sincerely one has approached the ethical challenges of involving and communicating with research participants in the CHRIS study.

Pär Segerdahl

Written by…

Pär Segerdahl, Associate Professor at the Centre for Research Ethics & Bioethics and editor of the Ethics Blog.

Biasiotto, Roberta; Pramstaller, Peter P.; Mascalzoni, Deborah. 2021. The dynamic consent of the Cooperative Health Research in South Tyrol (CHRIS) study: broad aim within specific oversight and communication. Part of BIOLAW JOURNAL-RIVISTA DI BIODIRITTO, pp. 277-287. http://dx.doi.org/10.15168/2284-4503-786

This post in Swedish

We care about communication

Global sharing of genomic data requires perspicuous research communication

To understand how our genes affect health and disease, drug reactions, and much more, researchers need to share vast amounts of data from people in different parts of the world. This makes genomic research dependent on public trust and support.

Do people in general trust research? Are we willing to donate DNA and health information to researchers? Are we prepared to let researchers share the information with other researchers, perhaps in other parts of the world? Even with researchers at for-profit companies? These and other issues were recently examined in the largest study to date about the public’s attitudes to participating in research and sharing genetic information. The questionnaire was translated into 15 languages ​​and answered by 36,268 people in 22 countries.

The majority of respondents are unwilling or unsure about donating DNA and health information to research. In general, the respondents are most willing to donate to research physicians, and least willing to donate to for-profit researchers. Less than half of the respondents say they trust data sharing between several users. The study also reveals differences between countries. In Germany, Poland, Russia and Egypt, for example, trust in data sharing between several users is significantly lower than in China, India, the United Kingdom and Pakistan.

The study contains many more results that are interesting. For example, people who claim to be familiar with genetics are more willing to donate DNA and health data. Especially those with personal experience of genetics, for example, as patients or as members of families with hereditary disease, or through one’s profession. However, a clear majority say they are unfamiliar with the concepts of DNA, genetics and genomics. You can read all the results in the article, which was recently published in The American Journal of Human Genetics.

What practical conclusions can we draw from the study? The authors of the article emphasize the importance of increasing the public’s familiarity with genomic research. Researchers need to build trust in data collection and sharing. They need to participate in dialogues that make it clear why they share large amounts of data globally. Why is it so important? It also needs to become more understandable why not only physicians can carry out the research. Why are collaborations with for-profit companies needed? Moreover, what significance can genetic techniques have for future patients?

Well-functioning genomic research thus needs well-functioning research communication. What then is good research communication? According to the article, it is not about pedagogically illustrating the molecular structure of DNA. Rather, it is about understanding the conditions and significance of genomic research for healthcare, patients, and society, as well as the role of industry in research and development.

Personally, I want to put it this way. Good research communication helps us see things more perspicuously. We need continuous overviews of interrelated parts of our own societies. We need to see our roles and relationships with each other in complex societies with different but intertwined activities, such as research, healthcare, industry, and much more. The need for perspicuous overviews also applies to the experts, whose specialties easily create one-sidedness.

In this context, let me cautiously warn against the instinctive reaction to believe that debate is the obvious form of research-communicative exchange of thoughts. Although debates have a role to play, they often serve as arenas for competing perspectives, all of which want to narrow our field of view. This is probably the last thing we need, if we want to open up for perspicuous understandings of ourselves as human beings, researchers, donors, entrepreneurs, healthcare professionals and patients. How do we relate to each other? How do I, as a donor of DNA to researchers, relate to the patients I want to help?

We need to think carefully about what it means to think freely, together, about common issues, such as the global sharing of genomic data.

Pär Segerdahl

Written by…

Pär Segerdahl, Associate Professor at the Centre for Research Ethics & Bioethics and editor of the Ethics Blog.

Middleton A., Milne R. and Almarri M.A. et al. (2020). Global public perceptions of genomic data sharing: what shapes the willingness to donate DNA and health data? American Journal of Human Genetics. DOI:https://doi.org/10.1016/j.ajhg.2020.08.023

This post in Swedish

We like broad perspectives

Broad and deep consent for biobanks

Pär SegerdahlA new article on consent for biobanks manages to surprise me. How? By pointing out what ought to be obvious! If we want to judge what kind of consent works best for biobanks, then we should look at today’s biobanks and not look back at more traditional medical research.

The risks in traditional medical research are mainly physical. Testing new substances and interventions on human subjects can harm them. Potential research participants must therefore be informed about these physical risks, which are unique to each specific project. For this reason, study-specific informed consent is essential in traditional medical research.

In biobank research, however, the risks are primarily informational. Personal data may end up in the wrong hands. The risks here are not so much linked to the specific projects that use material from the biobank. The risks are rather linked to the biobank itself, to how it is governed and controlled. If we want to give biobank participants ethical protection through informed consent, it is information about the biobank they need, not about specific projects.

In the debate on consent for biobanks, study-specific consent figured as a constant requirement for what informed consent must be. However, in the context of biobanks, that requirement risks placing an irrelevant demand on biobanks. Participants will receive the wrong protection! What to do?

Instead of looking back, as if study-specific consent were an absolute norm for medical research, the authors formulate three requirements that are relevant to today’s biobanks. First, potential participants should be informed about relevant risks and benefits. Second, they should be given an opportunity to assess whether research on the biobank material is in line with their own values. Finally, they should be given ethical protection as long as they participate, as well as opportunities to regularly reconsider their participation.

In their comparison of the various forms of consent that have figured in the debate, the authors conclude that broad consent particularly well satisfies the first criterion. Since the risks are not physical but concern the personal data that the biobank stores, information to participants about the biobank itself is more relevant than information about the specific projects that use the services of the biobank. That is what broad consent delivers.

However, the authors argue that broad consent fails to meet the latter two criteria. If potential participants are not informed about specific projects, it becomes difficult to judge whether the biobank material is used according to their values. In addition, over time (biobank material can be saved for decades) participants may even forget that they have provided samples and data to the biobank. This undermines the value of their right to withdraw consent.

Again, what to do? The authors propose a deepened form of broad consent, meant to satisfy all three requirements. First, the information provided to participants should include a clear scope of the research that is allowed to use the biobank material, so that participants can judge whether it is consistent with their own values, and so that future ethical review can assess whether specific projects fall within the scope. Secondly, participants should be regularly informed about the activities of the biobank, as well as reminded of the fact that they still participate and still have a right to withdraw consent.

Ethical reasoning is difficult to summarize. If you want to judge for yourself the authors’ conclusion that broad and deep consent is best when it comes to biobanks, I must refer you to the article.

In this post, I mainly wanted to highlight the originality of the authors’ way of discussing consent: they formulate new relevant criteria to free us from old habits of thought. The obvious is often the most surprising.

Pär Segerdahl

Rasmus Bjerregaard Mikkelsen, Mickey Gjerris, Gunhild Waldemar & Peter Sandøe. Broad consent for biobanks is best – provided it is also deep. BMC Medical Ethics volume 20, Article number: 71 (2019)

This post in Swedish

We challenge habits of thought : the Ethics Blog

In-depth critique of dynamic consent

Pär SegerdahlBiobanks are getting bigger and the human biological samples that are stored in the freezers have increasingly long-term utility for research. The samples can be used not only in one study, but also in several different studies. Not only in today’s research, but also in future research. This creates research ethical tensions.

Ethics requires that research participants are informed about and consent to the specific purpose of the project they are asked to participate in. However, when a large-scale biobank is being constructed, such specific information cannot be provided. Future research purposes do not exist yet and cannot be specified. Not until researchers in the future design new studies. How then can biobank research be conducted ethically?

In recent years, a technical solution has been launched: Transform research participants into users of new information and communication technologies (ICT)! Through their computers, tablets or cell phones, they can continuously be informed about new research projects. Sitting in front of their screens, they can give specific consent, or refrain from it, as new projects take shape and researchers apply for access to the biobank’s collected samples. The solution is named dynamic consent.

Dynamic consent certainly seems like an ingenious technical solution to the ethical tensions surrounding today’s increasingly long-term and large-scale biobanks. Moreover, is it not also democratic and politically progressive? Does it not give research participants greater power over the research? Is it not as if all these hundreds of thousands of donors of biological material voted on the direction of future research? Simply by deciding on the use of their own samples.

I recently read an in-depth critique of this belief in a technical solution to the ethical problem. The article is written by Alexandra Soulier at CRB, and focuses on ethical and political consequences of turning research participants into ICT users. Here are some comments that I want to highlight:

The public good that we associate with research is not the sum of isolated individuals’ private preferences in front of their computer screens. Dynamic consent is in tension with the collective and long-term nature of biobank research, and with the notion of the public good which research aims at.

If individual ICT users’ private decisions replace the joint discussions, considerations and functions of ethical committees, the governance of biobanks can be impaired. This, in turn, poses a risk to the participants themselves.

Dynamic consent might transform research participants into seducible audiences. Researchers may want to sell their projects to these audiences through clever communication strategies. Research participants are then treated as manipulable rather than as a rational public to be convinced.

Dynamic consent is not a referendum. Research participants do not vote on research policy issues. They only express their private preferences about their own research participation, project by project, without regard to any research policy implications for the long-term activities of the biobank.

Research participants who do not want to spend years in front of the screen in order to make decisions in real time about their participation in biobank research may feel forced to choose the option (through their technical device) to give exactly the open consent to future research that originally was considered problematic. How can what was considered to be the ethical problem be allowed to be included in the seemingly smart solution?

In summary, the proposed individual-centered technical solution to the ethical challenges of biobank research short-circuits the possibility of jointly taking political and ethical responsibility for these challenges.

I regret that I cannot do justice to Alexandra Soulier’s subtle discussion. I have not read such in-depth criticism in a long time. Read it!

Pär Segerdahl

Soulier, Alexandra. Reconsidering dynamic consent in biobanking: ethical and political consequences of transforming research participants into ICT users. IEEE Technology and Society Magazine, June 2019: 62-70

This post in Swedish

We like critical thinking : www.ethicsblog.crb.uu.se

People want to be able to influence the risk

Pär SegerdahlWe need to do research to know what people think is important in genetic risk information. What they prefer to know. But how do we find out? One way is to ask people to answer questionnaires.

One problem with questionnaires is that they ask one thing at a time. Do you prefer a hotel room with a sea view when you are on vacation? You probably answer yes. But do you prefer the sea view even if the room is above the disco, or costs 500 EUR per night? If you only ask one thing at a time, then it is difficult to know how different factors interact, how important they are relative to each other.

One way to get past this limitation is to ask people to choose between two alternatives, where the alternatives have several different attributes.

  • Hotel room A: (1) View: sea (2) Price: 200 EUR per night (3) Distance to the center: 30 minutes walk (4) Sound level: high.
  • Hotel room B: (1) View: parking (2) Price: 100 EUR per night (3) Distance to the center: 40 minutes bus ride (4) Sound level: low.

Which room do you choose, A or B? The choice tasks are repeated while the attributes are varied systematically. In this way, one can learn more about what people prefer, than through a regular questionnaire. One can see how different attributes interact and which attributes are more important than others are. One can also calculate how much more important an attribute is over another.

The same kind of study can be done about genetic risk information instead of hotel rooms. Jennifer Viberg Johansson at CRB recently did such a study. Four attributes of the risk information were varied in the choice tasks:

  • (1) Type of disease (2) Probability of developing disease (3) Preventive opportunities (4) Effectiveness of the preventive measure.

Which of the attributes was most important to the people who participated in the study? How much more important was it?

It turned out that the most important attribute was the effectiveness of the preventive measure. If the information contained an effective preventive measure, the respondents clearly preferred that information. The effectiveness of the preventive measure was twice as important to know, compared to the probability of developing the disease.

Apparently, it is important for people to be able to influence the risk. One conclusion in the study is that when risk information says that there is an effective preventive measure, then risk communication can focus more on the preventive measure than on the probability of developing disease.

The method is called, “Discrete Choice Experiment.” If you want to look more closely at the method and get more results, read Jennifer Viberg Johansson’s article in Genetics in Medicine.

Pär Segerdahl

Viberg Johansson, J., Langenskiöld, S., Segerdahl, P., Hansson, M.G., Hösterey Ugander, U., Gummesson, A., Veldwijk, J. Research participants’ preferences for receiving genetic risk information: a discrete choice experiment. Genetics in Medicine, 2019

This post in Swedish

ethics needs empirical input - the ethics blog

Genetic risk: Should researchers let people know?

Should researchers inform research participants if they happen to discover individual genetic risks of disease? Yes, many would say, if the information is helpful to the participants. However, the value of complex genetic risk information for individuals is uncertain. Jennifer Viberg Johansson suggests that this uncertainty needs to be acknowledged by both geneticists and ethicists.

One reason people want to participate in large genetic studies is the comprehensive health checks researchers often offer to collect data. In the future, people could also be offered information about genetic risks. According to Jennifer Viberg Johansson, there are some factors researchers should consider before offering these kinds of results.

Providing genetic risk information may not be as helpful to individuals as one may think. Knowing your genetic make-up is not the same as knowing your own probability for disease. In addition, the genetic risk information from research is not based on symptoms or personal concerns, as it would be in the healthcare system. It is thus less “personalised” and not connected to any symptoms.

Genetic risk information is complex and can be difficult to understand. To the research participants interviewed by Jennifer Viberg Johansson, risk information is something that offers them an explanation of who they are, where they are from, and where they may be heading. To them, learning about their genetic risk is an opportunity to plan their lives and take precautions to prevent disease.

Whether research participants want genetic risk information or not is more complex. Research participants themselves may change their answer depending on the way the question is asked. Risk research shows that we interpret probabilities differently, depending on the outcome and consequences. Jennifer Viberg Johansson’s work points in the same direction: probability is not an essential component of people’s decision-making when there are ways to prevent disease.

People have difficulties making sense of genetic risk when it is presented in the traditional numeric sense. It is hard to interpret what it means to have a 10 per cent or 50 per cent risk of disease. Instead, we interpret genetic risk as a binary concept: you either have risk, or you don’t. Based on her results, Jennifer Viberg Johansson suggests we keep this in mind for genetic counselling. We need to tailor counselling to people’s often binary perceptions of risk.

Communicating risk is difficult, and requires genetic counsellors to understand how different people understand the same figures in different ways.

Jennifer Viberg Johansson defended her dissertation September 21, 2018.

Anna Holm

Viberg Johansson J., (2018), INDIVIDUAL GENETIC RESEARCH RESULTS – Uncertainties, Conceptions, and Preferences, Uppsala: Acta Universitatis Upsaliensis

This post in Swedish

We like challenging questions - the ethics blog

Risks of discrimination in population-based biobanks

Pär SegerdahlEven good intentions can cause harm. Considerately treating certain groups as “vulnerable,” such as pregnant women and children, can cause discrimination against them. If we protect them from participation in clinical research, we know less about how they respond to medical treatments. They are therefore exposed to greater risks when they are patients in need of medical treatment. Thanks for your concern.

Deborah Mascalzoni points out possible discrimination patterns in population-based biobank research. She particularly highlights people with psychiatric conditions, who often are excluded from such studies. However, she also mentions children, who rarely are included in population-based biobanks, as well as people with early forms of dementia or addiction problems.

Mascalzoni thus asks how representative population-based biobanks really are. This is important, as results from such research are increasingly used in the planning of care. We need to see these potential discrimination patterns more clearly, so that people suffering from psychiatric conditions, for example, have similar opportunities to benefit from research as others.

However, the patterns are caused not only by how we think of certain groups as “vulnerable.” Even practical difficulties, to which you may not give much thought, can cause discrimination. It is ethically and legally cumbersome to recruit children as research participants. People suffering from depression may have suicidal thoughts, which requires special efforts. People with early symptoms of dementia may have difficulty understanding complex information, which complicates the process of informed consent.

Some groups are in practice more difficult to recruit to population-based biobanks. Not only our consideration of certain groups as “vulnerable,” then, but also practical obstacles to which we do not pay attention, may cause biased research results, which may lead to poorer care for certain groups. There is therefore reason to ask about representativeness.

Pär Segerdahl

Mascalzoni, D. 2017. Reverse discrimination for psychiatric genetic studies in population-based biobanks. European Neuropsychopharmacology 27: 475-476

This post in Swedish

We want to be just - the Ethics Blog

Global data sharing, national oversight bodies

Pär SegerdahlScience has an international character and global research collaboration is common. For medical research, this means that health data and biological samples linked to people in one nation often are transferred to researchers in other nations.

At the same time, the development of new information and communication technology increases the importance of people’s data protection rights. To provide satisfying data protection in the new internet world, data protection regulations are tightening, especially within the EU.

In an article in Health and Technology, lawyer Jane Reichel discusses challenges that this development poses for biomedical research.

I am not a lawyer, but if I understand Reichel right, legislation can accompany personal data across national borders. For example, the EU requires that the foreign receiver of European data subjects’ personal data will handle the data in accordance with EU legislation – even if the receiver is a research group in the United States or Japan.

The fact that one nation may need to follow a foreign nation’s legislation not only challenges concepts of sovereignty and territoriality. It also challenges the responsibility of research ethics committees. These committees operate administratively at national level. Now it seems they might also need to monitor foreign rights and global standards. Do these national bodies have the expertise and authority for such an international task?

Read the article about these exciting and unexpected legal issues!

Pär Segerdahl

Reichel, J. Health Technol. (2017). https://doi.org/10.1007/s12553-017-0182-6

This post in Swedish

Thinking about law - the Ethics Blog

Acknowledging the biobank and the people who built it

Pär SegerdahlBiomedical research increasingly often uses biological material and information collected in biobanks. In order for a biobank to work efficiently, it is important not only that the biological material is stored well. The material must also be made available to science so that researchers easily and responsibly can share samples and information.

Creating such a biobank is a huge effort. Researchers and clinicians who collect bioresources might even be reluctant to make the biobank openly available. Why make it easy for others to access to your biobank if they do not give you any recognition?

In an article in the Journal of Community Genetics, Heidi C. Howard and Deborah Mascalzoni, among others, discuss a system that would make it more attractive to develop well-functioning biobanks. It is a system for rewarding researchers and clinicians who create high quality bioresources by making their work properly acknowledged.

The system, presented in the article, is called the Bioresource Research Impact Factor (BRIF). If I understand it, the system may work the following way. A biobank is described in a permanent “marker” article published in a specific bioresource journal. Researchers who use the biobank then quote the article in their publications and funding grants. In this way, you can count citations of bioresources as you count citations of research articles.

The article also describes the results of a study of stakeholders’ awareness of BRIF, as well as an ethical analysis of how BRIF can contribute to more responsible biobanking.

If you are building a biobank, read the article and learn more about BRIF!

Pär Segerdahl

Howard, H.C., Mascalzoni, D., Mabile, L. et al. “How to responsibly acknowledge research work in the era of big data and biobanks: ethical aspects of the Bioresource Research Impact Factor (BRIF).” J Community Genet (2017). https://doi.org/10.1007/s12687-017-0332-6

This post in Swedish

We want to be just - the Ethics Blog

« Older posts